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Abstract 

Numerical studies of Klein's graph-theoretic cluster expansion ansatz (CEA) are made 
for several thermochemical properties and graph-theoretic ("topological") indices of 
alkanes. The ansatz expresses any molecular property in terms of unique numerical contri- 
butions arising from structural descriptors, subgraphs of the molecular slructural formula, 
called clusters. The collection of cluster contributions comprises a unique fmgerprint or 
signature characterizing each property. Signatures are pattern recognition tools whäch can 
be used to (1) identify the most significant structural descriptors for each property, and (2) 
analyze for similarity and dissimilarity among properties and indices. Visual renderings of 
CEA signatures display the structural origins of properties in an easily appreciated form. 

1. Introduction 

What accounts for the physicochemical properties of each pure substance and 
how may one design a substance with specific desired properties? What distinguishes 
one property from another and how does "chemical structure" find expression in each 
property? Two strategies have been followed to answer these fundamental quesüons. 
The ab initio approach adopts quantum chemistry and statistical mechanics to determine 
all properties from first principles using laborious computafions. Although this 
approach provides a fundamental mechanistic understanding, it is incapable, with 
current computer technology, of calculating certain properties - boiling points of hydro- 
carbons or activities of carcinogens, to mention only two [1]. By contrast, computa- 
tionally simple and mathematically unsophisticated empirical approaches are 
sanctioned through long usage in an unrestricted range ofapplications. It is this second, 
older approach that we examine here, namely, an empirical but systematic, analytical 
and objective analysis of extensive data sets seeking pattems which reveal "chemical 
structure information". 

1.1. RECOGNIZ/NG CHEMICAL STRUCTURE 

Ultimately, all chemical concepts, including the most fundamental structuml 
ones, are extracted from experimental data by some sort of "pattem recognition" 
procedure [2]. Experimental data for families of related molecules offen exhibit 
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regularities which reveal the structural origin of physical properties. By this is meant 
that the properties are related to the arrangement of molecular structural units, 
e.g. atoms and functional groups. Chemical intuition posits that physical properUes arise 
from contributions made by the constituent paris of a chemical strucmre. This idea has 
be.en extremely fruitful for all branches of chemistry, both for predicüve ability and 
concept development. It provides the foundation of the very concept of a chemical bond. 

To discover familial regularities and expose the corresponding structural origins 
has been a central theme of modern chemistry. The search for a recognizable pattem 
consists of careäfl measurements, followed by appropriate data reduction techniques. 
An early prototype for this paradigrn is the expression for heats of formation in terms 
of "bond energies". Fajans introduced bond energy terms around 1920, assuming such 
quantities to be additive and transferable from one molecular structure to another. This 
met with such success that departures from the rule inspired the definition of new 
structural concepts: steric strain (destabilization) or resonance (stabilization) energies. 
In 1934, Zahn refined Fajans' scheme by adding terms associated with nearest-neighbor 
interactions. Increasingly specialized schemes have been developed, yielding more 
accurate predictive ability by introducing numerous but less readily interpreted para- 
meters. 

1.2. CHEMICAL GRAPH THEORY 

As early as 1878, Sylvester recognized the intimate link between chemical 
structure and mathematical graph theory [3]. Most realizations of this linkage for 
pattem recognition in physicochemical data employed correlations with various "graph- 
theoretic invariants". For example, a variety of indices, exemplified by the Wiener 
number and the Randi6 index, have been correlated with boiling points, melting points, 
heats of combustion, carcinogenicity, drug-receptor interactions, etc. [4-7]. Graph 
theory is by now a respected approach for pattem recognition in chemistry: Trinajsti6 
et al. [8] suggested that graph theory may offer more insight than a computerized 
numerical study (meaning quantum theory and statistical mechanics) when considering 
relationships between parücular structural features and a single physicochemical 
property of a molecule; Gordon and Kennedy [9] state that the theory of graphs provides 
"a single systematic definition [which] contains. . ,  practically all that is useful in 
previously proposed additivity schemes for predicting standard thermochemical data". 
The extent of applicability of graph theory in chemistry is recounted in numerous 
reviews and monographs [ 10-13]. 

1.3. STRUCTURAL DESCRIPTORS 

The outcome of pattem recognition analysis is a model in which to correlate and 
interpret the data. The traditional model for chemical structure contains descriptive 
elements: bonds, strain, resonance and the like. Each of these descriptors was introduced 
individually, on more or less subjective grounds, to ref'me the structural model. No 
mathematical imperative dictates these parücular descriptors; rather, they are inspired 
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jointly by regulariües in the data and subjective reasoning. Nevertheless, it is hardly 
imaginable that many of these traditional concepts could be eliminated from chemistry. 

By adopting graph theory as the basis of structural models, we naturalAy include 
the bond descriptors and all the connection relations that fonow with it. The possibility 
is open that new descriptors will appear in the course of graph-theoretic analyses. This 
prospect is highly dependent upon the specific form of the graph-theoretic model. For 
example, the various indices (Wiener or Randi6) am an attempt to summarize all the 
structural relationships of a graph into a sing!e number (descriptor) or a smaU collection 
of numbers (descriptors) [14]. Other, more refined descriptors, either systematic or 
arbitrary, have been suggested: the linear combinations of graph invariants (LCGI) of 
Gordon and Kennedy [15] are important examples. 

Recently, efforts have been made to refine the structural paradigm in a rigorous 
mathematical manner. The goal is to introduce structural descriptors systematically as 
they are required to account for the data. Acceptable descriptors must satisfy the 
following criteria. 

1.4. SELECTION CR1TERIA 

Comparison between pattem recognition models can be made rational by agree- 
ing upon a set of selection criteria. For us, the following appear to be reasonable criteria: 

• Objective mies are followed to introduce structural descriptors. 

• Descriptors am necessary and sufficient, within the model, to account for all 
experimental data. 

• It is also convenient, but hardly necessary, if traditional descriptors am 
naturaUy included in the model. 

Various graph indices are essentially arbitrary; the collection of such indices does 
not form a rationally related whole, and it has not been shown how to select independent 
and complete sets of indices. Similarity indices [16] may follow rigomus mathematical 
principles, but they too are arbitrary and do not fit the necessary and sufficient criterion. 

1.5. GRAPH-THEORETIC CLUSTER EXPANSIONS 

The graph-theoretic cluster expansion offers such structural descriptors and 
provides, as weil, the formal mathemaücs with which to verify and quantify statements 
comparing chemical structure to physical pmperües. 

Graph-theoretic cluster expansions have been used to investigate a variety of 
physicochemical properties, and even biogenic activities [17,18]. Our approach is in the 
spirit of those just mentioned, using a graph-theoretic cluster expansion ansatz (CEA) 
(see the following sections for an explanation) advanced by Klein [19], which satisfies 
the criteria listed above. Successful previous applications of the CEA indicate a broad 
range of applicability for the method. Schmalz et al. [20] applied the method to the 
Hückel molecular energy of acyclics; similarly, Poshusta et al. [21] have applied it to 
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eigenvalues of the Pariser-Parr-Pople, Heisenberg, and Hubbard model Hamiltonians; 
other applicafions have been made to hydrogen atom chains and to metallic 
sodium [22,23]. All previous applications wem restricted to only smaU clusters limited 
to graphs with smaU diameters and never with more than seven subgraphs. Our present 
applications are to data for clusters with diameters up to ten and with no restrictions on 
the induced subgraphs included. Thus, we am able to study the convergence of the CEA 
for very large expansions. 

The CEA has many possible forms, according to the property being studied. 
Klein [19] has classified prot~rties into constantive, additive, multiplicative and 
derivative. In each class, a different cluster expansion set is appropriate. The method 
applies not just to scalar properües, such as heats of formation, but also to Hamiltonian 
operators and quantum mechanical wave functions. Our applications are to simple 
scalar properties, thus avoiding the complications of cluster expanded operators or other 
non-scalar quantities. Our approach, like previous ones, is restricted to the additive type 
of expansion appropriate for so-called additive properties. 

This CEA is recommended by several other useful features described by Klein. 
The CEA naturally gives rise to a hierarchy of descriptors called clusters, some of which 
lie in close correspondence to traditional chemical structural elements. Once the cluster 
expansion method has been selected, any property is rigorously and uniquely resolved 
into its cluster contributions, which are also necessary and sufficient. 

The present work studies the CEA through numerical analysis of several example 
properües. We choose to cluster expand thermochemical properties of saturated hydro- 
carbons. Alkanes form a particularly well-documented family of chemical compounds 
and, as such, provide an opportunity to extend the empirical approach to the deepest 
level and most detailed structural pattem. We also consider a few mathematical simu- 
lated "properties". Our goals are to apply the CEA to large data sets and large clusters, 
and to possibly identify new, important structural descriptors. Concurrently, we test the 
CEA convergence rates and compare and contrast properües according to the cluster 
expansion results. 

In the next section we review, very briefly, chemical graph theory to establish 
notation and to introduce the WAV coding of graphs used to represent them. FoUowing 
this, we describe the cluster expansion ansatz, identify its structural descriptors and 
discuss normalizaüon of these descriptors, define additive properties and present con- 
vergence criteria. Next, we cite the sources of our data and discuss the data's suitability 
and limitations for our purposes. Then we display the results of the cluster expansions, 
identifying significant descriptors and features. Finally, we discuss these results and 
draw conclusions. 

2. Graph-theoretic terminology 

Graph-theoretical notation and nomenclature are not uniform; however, the 
following basic concepts and definitions are weil accepted. Let F(V, E) denote a graph 
whose vertex set is V and whose edge set is E. We then think of a graph as a coUection 
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of vertices (atoms) which are joined together by edges (bonds). We take the term graph 
to imply a finite, undirected structure without loops or multiple edges. 

The valence of a vertex v is analogous to the valency of an atom. It is defined 
as the number of edges incident at that vertex. Our results apply to trees, which are 
graphs without cycles. We say that )'is a subgraph of F and write ) '~  F if )'= (V', E')  
with V'c_ V and E ' ~  E. For any set S of vertices in F, the induced subgraph (S) is defined 
as that subgraph of F with vertex set S such that two verüces axe adjacent in (S) if and 
only if they are adjacent in F. Whenever the term subgraph appears in this work, 
induced subgraph is implied. That is, we are concemed only with connected graphs and 
subgraphs. A graph is said to be connected if there is at least one path between all pairs 
of vertices. A path fmm i to j is a sequence of edges (i, k), (k, l) . . . . .  (m, n), (n,j) 
commencing with i and terminating with j. The length of such a path is the number of 
edges it contains. The length of the shortest path fmm i to j is the distance from i to j. 
The diameter of a graph is the largest distance existing in that graph. 

It is convenient for subsequent discussions to define the following special classes 
of graphs: chain, complete bigraph, star and binary star. Chains are trees with no 
branches. A complete bigraph F is a graph whose vertex set V can be partitioned into 
two subsets V 1 and V 2 and contains every edge joining V1 and V 2 but no edges between 
pairs of vertices in the same set. If V~ and V 2 have m and n edges, then F = Km,, A star 
is a complete bigraph K ~ ,  A binary star is two stars with only one common edge. 

One mathematical 'representation of graphs is their adjacency matrix, familiar to 
chemists from Hückel MO theory. This matrix is formed by taking the vertex labels as 
the indices for the rows and columns. Entries are either zero, if the row and column 
verüces are not connected, or one in the case that they are conJaected, that is, adjacent. 
Note that the adjacency matrix of a graph is not unique. There are many ways to label 
the vertices and hence order the rows and columns of the adjacency matrix. This leads 
to considering graph isomorphism. Two graphs F~ and F 2 are isomorphic if there is a 
one-to-one mapping from the vertices of F~ to the vertices of F 2 that preserves the 
adjacency relationship. Also useful is the distance matrix: Dij is the length of the 
shortest path between vertices i and j. 

We say that )'is embedded in F if and only if )'is isomorphic to a subgraph of 
F. It may be that )' is isomorphic to several subgraphs of F, in which case we are led 
to define n(F, )') to be the number of subgraphs of F isomorphic to 7. We also say that 
)'is embedded in F n(F, )') times. We call n(F, )') the frequency of ) 'embedded in F. 

3. Trees and their WAV codes 

We have selected Read's walk around valence code (WAV) [24] to represent the 
201 trees with up to 10 vertices used in this work. Table 1 lists the codes used in both 
theoretical and experimental cluster expansions. The code and its use in our computer 
program are discussed in more detail in our previous paper [25]. Read describes how 
to decode the WAV codes. For example, consider the code for 2, 3-dimethylpentane: 
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Walk arotmd valency codes (WAV). The first column gives the sequence number for all trees with up 
to ten vertices, while the second column gives the sequence number for all alkanes up to ten carbons 

Sequence numbers Codes Sequence numbers 

Trees with Alkanes with Trees with Alkanes with 
up to 10 up to 10 up to 10 up to 10 
vexfiees carbons veraces carbons 

Codes 

1 1 0 51 43 
2 2 1 0 52 44 
3 3 2 0 0 53 45 
4 4 2 1 0 0 54 46 
5 5 3 0 0 0 55 47 
6 6 2 1 0 1 0 56 48 
7 7 2 2 0 0 0  57 49 
8 8 4 0 0 0 0  58 50 
9 9 21 1 0 1 0  59 51 

10 10 2 1 0 2 0 0 60 52 
11 11 3 0 1 0 1  0 61 53 
12 12 3 2 0 0 0 0 62 54 
13 13 2 3 0 0 0 0 63 55 
14 5 0 0 0 0 0  64 56 
15 14 2 1 1 0 1 1 0 65 57 
16 15 2 1 2 0 0  1 0 66 58 
17 16 2 2 0  1 0 1 0 67 59 
18 17 3 1 0 1 0  1 0 68 60 
19 18 2 2 0 0 2 0 0 69 61 
20 19 3 0 1 0 2 0 0 70 62 
21 20 2 1 0 3 0 0 0 71 63 
22 21 4 0 0 1 0 1 0  72 64 
23 22 3 3 0 0 0 0 0 73 65 
24 2 4 0 0 0 0 0  74 66 
25 6 0 0 0 0 0 0  75 67 
26 23 21 1 1 0 1  10  76 68 
27 24 21 1 0 1 2 0 0  77 69 
28 25 21  1 0 2 0 1  0 78 70 
29 26 3 0 1  1 0 1  10  79 71 
30 27 2 2 1 0 1 0 1 0  80 
31 28 2 1 2 0 0 2 0 0  81 
32 29 3 1 0 1 0 2 0 0  82 
33 30 3 2 0 1 0 0 1 0  83 72 
34 31 2 2 0 1 0 2 0 0  84 73 
35 32 2 2 0 2 0 0 1 0 85 74 
36 33 2 1 3 0 0 0 1 0 86 75 
37 34 2 3 0 0 1 0 1 0  87 
38 35 4 0 1 0 1 0 1 0 88 
39 36 3 0 2 0 0 2 0 0 89 
40 37 2 2 0 0 3 0 0 0 90 
41 38 3 0 1 0 3 0 0 0  91 
42 39 4 0 0 1 0 2 0 0  92 
43 2 1 0 4 0 0 0 0  93 
44 5 0 0 0 1 0 1 0  94 
45 40 4 3 0 0 0 0 0 0 95 
46 3 4 0 0 0 0 0 0 96 76 
47 2 5 0 0 0 0 0 0 97 77 
48 7 0 0 0 0 0 0 0 98 78 
49 41 21  1 1 0 1  1 10  99 79 
50 42 21  1 2 0 0 1  1 0  100 80 

2 1 2 0 1 0 1 1 0  
2 2 0 1 1 0 1 1 0  
2 1 1 0 2 1 0 1 0  
3 1 0 1 1 0 1 1 0  
2 1 2 0 0 1 2 0 0  
2 2 1 0 2 0 0 1 0  
3 0 1 1 0 1 2 0 0  
3 0 1 1 0 2 0 1 0  
3 2 1 0 1 0 0 1 0  
2 1 2 0 0 2 0 1 0  
2 2 0 1 0 2 0 1 0  
2 2 1 0 1 0 2 0 0  
2 1 1 0 2 0 2 0 0  
2 1 1 0 1 3 0 0 0  
2 1 1 0 3 0 0 1 0  
2 3 0 1 0 1 0 1 0  
4 0 0 1 1 0 1 1 0  
4 1 0 1 0 1 0 1 0  
2 2 0 2 0 0 2 0 0  
3 2 0 2 0 0 0 1 0  
3 1 0 2 0 0 2 0 0  
2 1 3 0 0 0 2 0 0  
2 3 0 0 2 0 0 1 0  
3 1 0 1 0 3 0 0 0  
3 1 3 0 O 0 0 1 0  
3 3 0 0 1 0 0 1 0  
4 0 1 0 1 0 2 0 0  
2 2 0 3 0 0 0 1 0  
2 3 0 0 1 0 2 0 0  
2 1 4 0 0 0 0 1 0  
2 4 0 0 0 1 0 1 0  
5 0 0 1 0 1 0 1 0  
4 0 0 2 0 0 2 0 0  
3 0 2 0 0 3 0 0 0  
2 3 0 0 0 3 0 0 0  
4 0 0 1 0 3 0 0 0  
2 2 0 0 4 0 0 0 0  
3 0 1 0 4 0 0 0 0  
5 0 0 0 1 0 2 0 0  
2 1 0 5 0 0 0 0 0  
6 0 0 0 0 1 0 1 0  
4 4 0 0 0 0 0 0 0  
3 5 0 0 0 0 0 0 0  
2 6 0 0 0 0 0 0 0  
8 0 0 0 0 0 0 0 0  
2 1 1 1 1 0 1 1 1 0  
2 1 1 1 0 1 1 2 0 0  
2 1 1 1 0 1 2 0 1 0  
2 1 1 1 0 2 0 1 1 0  
3 0 1 1 1 0 1 1 1 0  
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Table 1 (continued) 

Sequence numbers 

Trees with Alkanes with 
up to 10 up to 10 
vertices carbons 

Codes Sequence numbers 

Trees with Alkanes with 
up to 10 up to 10 
verüces carbon~s 

Codes 

101 81 
102 82 
103 83 
104 84 
105 85 
106 86 
107 87 
108 88 
109 89 
110 90 
111 91 
112 92 
113 93 
114 94 
115 95 
116 96 
117 97 
118 98 
119 99 
120 100 
121 101 
122 102 
123 103 
124 104 
125 105 
126 106 
127 107 
128 108 
129 109 
130 110 
131 111 
132 112 
133 113 
134 114 
135 115 
136 116 
137 117 
138 118 
139 119 
140 120 
141 121 
142 122 
143 123 
144 124 
145 125 
146 126 
147 127 
148 128 
149 129 
150 130 

2 2 1 0 1 1 0  1 1 0  151 131 
2 1 2 1 0 1 0 1 1 0  152 132 
3 1 1 0 1  1 0 1  10  153 133 
21 1 2 0 0 1 2 0 0  154 
2 1 2 0 1 0 0 1 1 0  155 
2 2 0 1 0 2 1 0 1 0  156 
2 2 0 1  1 0 1 2 0 0  157 
2 2 0 1  1 0 2 0 1 0  158 
2 2 0 1 2 0 0 1  10  159 134 
2 2 0 2 0 1  01 10  160 135 
3 0 1  1 0 2  1 01 0 161 136 
3 1 0 1  1 0 1 2 0 0  162 137 
3 1 0 1 1 0 2 0  10  163 138 
3 1 1 0 11 0 2 0 0  164 139 
3 2 0  1 1 0 0  1 1 0 165 140 
2 1 2 0 0 2  1 01 0 166 141 
2 1 2 0  1 0 1 2 0 0  167 142 
21 2 0 1 0 2 0 1 0  168 143 
2 1 1 0 2 1 0 2 0 0  169 144 
3 2  1 0 1 01 0 1 0 170 145 
2 1 1 0 3 0  1 0 1 0 171 146 
21 1 3 0 0 0 1  1 0 172 147 
2 1 3 0 0 1  01 1 0 173 148 
2 3 0 0 1  1 01 1 0 174 
4 0 1 0 1  1 0 1  10  175 
2 3 1 0 1 0 1 0 1 0  176 
3 0 1  2 0 0 1 2 0 0  177 
2 1 2 0 0 2 0 2 0 0  178 
2 2 2 0 0 2 0 0 1 0  179 
3 2 1 0 2 0 0 0 1 0  180 
3 0 1  2 0 0 2 0 1 0  181 
3 0 2 0 1  0 2 0  1 0 182 
3 2  10  1 0 0 2 0 0  183 
3 0 1  1 0 2 0 2 0 0  184 
2 2 0 1 0 2 0 2 0 0  185 149 
2 2 1 0 2 0 0 2 0 0  186 150 
21  2 0 0 1  3 0 0 0  187 
2 2 1 0 3 0 0 0 1 0  188 
2 3 0 1 0 1  0 2 0 0  189 
2 3 0 1  0 2 0 0 1 0  190 
3 0 1  1 01 3 0 0 0  191 
3 0 1  1 0 3 0 0 1 0  192 
3 3 0 0 1 0 1 0 1 0  193 
3 3 0 1 0 1  0 0 1  0 194 
4 0 0 1  1 0 1 2 0 0  195 
4 0 0 1  1 0 2 0 1 0  196 
21 2 0 0 3 0 0 1 0  197 
2 2 0 1 0 1 3 0 0 0  198 
2 2 0  1 0 3 0 0  1 0 199 
2 2 1 0 1 0 3 0 0 0  200 

201 

2 1 1 0 2 0 3 0 0 0  
2 1 1 0 3 0 0 2 0 0  
4 1 0 1 0 1 0 2 0 0  
2 1 1 0 1 4 0 0 0 0  
2 1 1 0 4 0 0 0 1 0  
2 4 0 0 1 0 1 0 1 0  
5 0 0 0 1 1 0 1 1 0  
5 0 1 0 1 0 1 0 1 0  
3 2 0 0 2 0 0 2 0 0  
3 2 0 2 0 0 0 2 0 0  
2 2 0 2 0 0 3 0 0 0  
2 2 0 3 0 0 0 2 0 0  
2 3 0 0 2 0 0 2 0 0  
3 2 ~ 3 0 0 0 0 1 0  
3 3 0 0 1 0 0 2 0 0  
3 3 0 0 2 0 0 0 1 0  
4 0 1 0 2 0 0 2 0 0  
3 1 0 2 0 0 3 0 0 0  
2 1 3 0 0 0 3 0 0 0  
4 3 0 0 1 0 0 0 1 0  
2 3 0 0 1 0 3 0 0 0  
2 3 0 0 3 0 0 0 1 0  
4 0 1 0 1 0 3 0 0 0  
2 1 4 0 0 0 0 2 0 0  
2 4 0 0 0 2 0 0 1 0  
3 1 0 1 0 4 0 0 0 0  
3 1 4 0 0 0 0 0 1 0  
3 4 0 0 0 1 0 0 1 0  
5 0 0 1 0 1 0 2 0 0  
2 2 0 4 0 0 0 0 1 0  
2 4 0 0 0 1 0 2 0 0  
2 1 5 0 0 0 0 0 1 0  
2 5 0 0 0 0 1 0 1 0  
6 0 0 0 1 0 1 0 1 0  
3 0 3 0 0 0 3 0 0 0  
4 0 0 2 0 0 3 0 0 0  
5 0 0 0 2 0 0 2 0 0  
3 0 2 0 0 4 0 0 0 0  
2 3 0 0 0 4 0 0 0 0  
5 0 0 0 1 0 3 0 0 0  
4 0 0 1 0 4 0 0 0 0  
2 2 0 0 5 0 0 0 0 0  
3 0 1 0 5 0 0 0 0 0  
6 0 0 0 0 1 0 2 0 0  
2 1 0 6 0 0 0 0 0 0  
7 0 0 0 0 0 1 0 1 0  
5 4 0 0 0 0 0 0 0 0  
4 5 0 0 0 0 0 0 0 0  
3 6 0 0 0 0 0 0 0 0  
2 7 0 0 0 0 0 0 0 0  
9 0 0 0 0 0 0 0 0 0  
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3 0 1 0 2 0 0 .  The first numeral in the code gives the valence of vertex one, whereas 
subsequent numerals equal the valence -1 of the respective vertices. Each zero implies 
a terminal vertex of valence one: a leaf. In this example, three branches were attached 
to vertex one. The first branch, starting with the second vertex, has valence one and is 
therefore a terminal vertex and ends this branch. The second branch begins with the 
third and ends with the fourth vertex. The third branch from vertex 1 starts with vertex 
5 in the code and has two (2) further branches, each terminating in a leaf: 

3 0 1 0 2 0 0 ~  

7 

6 2 

I I 
5 1 3 4 

In this way, each code in table 1 can be decoded into its graph. 

4. The chemico-graph-theoretic-cluster expansion ansatz 

Klein has shown a general cluster expansion ansatz to express properties in terms 
of graph-theoretic structural elements. The addifive case of Klein's ansatz uses a cluster 
function consisting of the number of times a given cluster appears as a subgraph within 
a larger graph representing the molecule of interest. Obtaining the cluster function is an 
enumeration problem and was covered in a previous paper [25]. The graphs considered 
here belong to alkanes. The hydrogens are suppressed, leaving a graph with vertices 
representing carbon atoms and edges representing carbon-carbon "bonds". Let the 
molecular system be denoted by its graph F and any property by P(F). Then the intuitive 
notion that properties arise from contributions made by parts of the molecule is 
quantified by the cluster expansion ansatz: 

P(F) = ~ n(F, y)p(y). (1) 

Each cluster, subgraph, stmctural component, ~, is a descriptor for molecular properties. 
The cluster expansion resolves P(F) into a sum of terms arising from all possible 
clusters. The several p(y) am cluster contributions to P made by cluster y. Their values 
are specific to the property being expanded. If p(F)  = 0, then the value of P(F)  is 
entirely accounted for by the proper subgraphs (clusters)of F; alternatively, the 
graphical structure of the molecule itseff does not contribute to the property. If 
p ( F ) < 0 ,  then the sum of contributions made by { p ( y ) : y e  F} exceeds P(F).  
Conversely, if p (F)  > 0, then the sum falls short of P(F). In either case, p(V) is the 
unique contribution to P(F)  from the structure F as distinct from all its substructures. 
The embedding frequency n(F, y) counts the number of each cluster in F. Frequencies 
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are independent of the physical propcrties and are thus invariants for the graph. For 
example, the graph of 2, 3-dimethylpentane yields the cluster expansion: 

= 7 p ( . ) +  6 p ( . - -  . ) +  7p( . . . . .  ) 

+ 2p( . . . . . . . . .  ) 

• sp I 

+ 2P l 

+P/ i 

Embedding frequencies and their properties were reported for all trees with up to ten 
vertices in our previous paper [25]. 

One pmperty needed for the CEA is that graphs fall into closed embedding 
classes. For example, all subgraphs of normal alkanes are themselves normal. Further, 
the graphs of carbon frameworks which have valences no higher than four are closed 
under subgraph embedding. 

Considering eq. (1) to be a system of linear equations for a collection of 
embedded graphs, we arrive at the following matrix formulation, 

e = Np,  (e) 

where N is the lower triangular array labeled by F, ?' (row, column) and called the 
embedding frequency matrix. As stated above, graphs fall into closed embedding 
classes; eq. (2) applies for any such class. For example, restricting the valence of a 
vertex to four results in a matrix for the class of alkane graphs. Given measured or 
computed values for the property P(F) for all graphs of the class, then the cluster 
contributions are found by inverting the cluster expansion: 
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p = N-XP. (3) 

We expect the values of  p(7) to provide insight into the nature of  the pmperty P. The 
coUection of  CEA values { P(7), all 7 in F} a r e a  characterisfic or signamre of  the 
pmperty P in the same way as Fourier coefficients in a spectral analysis. 

Errors in the physical measurement are propagated through the inverse cluster 
funcüon. That is, if the errors in the measured P(F)  am independent with standard 
deviations AP r ,  then the squares of the standard deviations for the derived cluster 
coefficients P(7) are given by 

Ap2= ~(N-')2rrA/~ 2. (4) 
F 

Normalization. It is convenient, when comparing and contrasting properties, to 
remove from p a n y  dependence upon scale and reference level of  measurements. Such 
dimensionless cluster coefficients we call normalized. Normalization is possible 
because of  the following relationship between two properties which differ in scale and 
reference level: 

(5) 

For trees, it follows that 

p" = N - 1 P "  = o:p + ~ . 

To see this, note that 

(6) 

/~/[il [il li/ N -1 = ¢:~N = , (7) 

and 
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[~1] N 0 

F 

= n(F, .  ) -  n(1- ' , - - - . )  

= IV(F)I-  IE(F)I 

= 1 ,  

since trees have one fewer edges than vertices. 
According to eq. (6), the reference level affects only the coefficients of clusters 

(.) and (. - - .  ), while coefficients of all remaining clusters are multiplied by the same 
factor with a scale change. Thus, scale may be removed from cluster coefficients using 
the "normalizaüon" transformation: 

IP(Tõ-~I p + IP(Yo)----~ ' (8) 

where 70 is any cluster excluding (.) and (. - - .  ) and such thatp(y o) # 0. With the same 
choice for 70, normalized signatures of propelties which differ only in scale and 
reference level are identical, as may be easily verified. 

Klein has classified physicochemical properties into types according to their 
imagined behavior in relation to bond formation between molecular fragments. Con- 
sider a molecule represented by the graph F to be constructable from its two fragments 
represented by disjoint subgraphs A and B. Imagine forming a bond represented by one 
edge from vertex i m ofA tojB of B: F = A(ia,jB)B. Then, P(F) is said to be an additive 
property if 

lim oP(F) = P(A ) + P(B ), 
(la ,is) ~ o 

(9) 

where the limit means that the bond is graduaUy weakened to zero. In this case, Klein 
shows that the summation in the cluster expansion (eq. (1)) should extend over all 
connected subgraphs. Non-additive properües which do not foUow eq. (9) nevertheless 
may obey a cluster expansion of the form of eq. (2). In such cases, other classes of 
subgraphs are appropriate and hence different embedding frequencies N are required. 

Convergence. Mathematical convergence of the CEA can be defined in terms of 
a size function on graphs, e.g. graph diameter. If S(7) is such a function, then we say 
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the CEA coefticients converge if for every small number e there exists a size % beyond 
which all clusters contribute less than e: 

I p(~,)l < e, V 7 9 S(~') > a t. (10) 

Only practical convergence can be discemed for experimental properties, since 
measurements cannot be made for arbitrarily large molecules. Nevertheless, the 
evidence may strongly suggest convergence or nonconvergence. 

5. Experimental data 

It is very difficult to find reliable experimental data for graph-theoreüc analysis. 
We have taken experimental data from the TRC Thermodynamic Tables - Hydro- 
carbons [26]. Occasional checks were made against data tabulated by Cox and 
Pilcher [27]. We have chosen propenJes for one hundred and fifty alkanes with up to 
ten carbons. These will be referred to as the isomeric alkanes data set. Data for the 
normal hydrocarbons are complete, for many properties, through only twenty carbons. 
Boiling points and melting points for normal hydrocarbons are available through forty 
carbons. Although these thermochemical data have been carefully collected and placed 
in standard reference tables, their reliabilities and uncertainties are not uniform. For 
example, standard deviations are seldom reported, making it difficult to fully assess the 
reliability of the CEA. Cox and Pilcher report errors in the form of uncertainty intervals 
wherever possible. The TRC gives a rough indication of the estimation of uncertainty 
by the number of significant figures used to display the data, "the unceltainty reflects, 
in the view of the compiler, the effect of both random and systematic errors". For our 
purposes, these experimental data suffer not only from unreported or unreliable errors, 
but also from lacunae. In addition, it is not clear when values have been calculated. 

Interpreting the boiling point results is complicated by the lack of consistency 
from table to table. For example, table 23-2-(1.101)-m [26] tabulates liquid-to-gas phase 
transition temperatures for normal alkanes with up to twenty carbons; these values often 
differ by more than the implied error from those data reported in the same reference, 
table 23-2-(1.101 )-a, a tabulation of normal alkane boiling points. For convenience, data 
from the latter table will subsequently be referred to as nbp. A data set obtained by 
combining values for alkanes with up to twenty carbons from the former table with 
values for twenty-one through forry carbons from nbp will be referred to as tvap. The 
same references are cited in both tables for all but four of the normal alkanes tabulated, 
yet these two tables concur for only one of these alkanes, n-Eicosane. It was not possible 
to cluster expand the melting points of the isomers due to one or more missing values 
in the data sets for hexanes, heptanes and octanes. Very few melting points for nonanes 
and decanes are tabulated. 
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6. Theoretical data 

Certain quantities, variously called graph-theoretic invariants or graph indices, 
are commonly computed to express the structural characteristics of a graph in a single 
number. The Wiener number and Randi~ index are the most common. For a graph F, 
the Wiener number is defined from the distance matrix: 

w(r)= ½ 2d, j (11) 
t ,J  

and the Randi6 index from the adjacency matrix and valences: 

A o 
R(r )  = (12) 

These invariants may be regarded as purely mathematical "properües" of the corre- 
sponding molecule. Of course, theoretical data am uncorrupted by experimental errors. 
Cluster expansions of theoretical data have been performed on the 201 trees with up to 
ten vertices. 

Statistical correlations have been found between experimental properties and 
mathematical indices. In this way, an insight has been gained into the origin of proper- 
ties in molecular structure. 

Finally, new insights might be gained from comparing cluster expansions of 
experimental and mathematical properties. If two signatures correlate, i.e. show close 
resemblance, then there may be a genuine underlying relationship between the two 
pmperties. 

7. Cluster expansion results 

7.1. EXPERIMENTAL PROPERTIES 

Cluster expansions were performed for heats of formation, boiling points, and 
enthalpies and entropies of vaporization for all normal and branched alkanes with up to 
ten carbons. Normal alkane cluster expansions, through twenty carbons, were per- 
formed for heats of formation, entmpies of vaporization and critical temperatures. 
Boiling points and melting points were cluster expanded on normal alkanes with up to 
forty carbons. All results are not displayed due to limited space, but are available 
elsewhere [28]. Results are shown in the form of signatures in figs. 1-4, with the 
exception of the heats of formation for normal alkanes, which are given in table 2. The 
discussion starts with properties of normal alkanes and is followed by the isomers. 

Normal alkane boiling points, entropies of vaporization, critical temperatures, 
melting points and heats of formation exhibit practical convergence, in accordance with 
our above discussion. As the length of the cluster increases, the magnitude of its 
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coefficient decreases, within experimental error. This convergence supports intuitive 
expectation that the primary contribufions to these properties arise from clusters which 
represent carbon atoms C - C  bonds and next nearest-neighbor interactions, bond-bond 
interacüons. 

co 
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Fig. 1. Boihng point signature for normal alkanes through forty carbons. The cluster b.p. scale 
is expanded to better display the small coefficients. Values forp'(. ) and p'(  . . . . .  ) lie oft 
the scale and are 2.760 and -1, respectively. Two sources for the data are compared: nbp 
refers to TRC table 23-2-(1.101)-a and tvap contains the twenty boiling points from TRC table 
23-2-(1.101)-m with the boihng points for carbons 21--40 from nbp appended. Normalized 
using aab p = 1/26.42 K -1, flnbp = -38.7/26.42, atvap = 1/26.3 K -1 and fltv,p = -38.7/26.5. 

Two normal alkane boiling point signamres a.re shown in fig. 1, corresponding to 
experimental data sets nbp and tvap (see above). Note first that C~A coefficients 
beyond n = 2 are negative with few exceptions. An excursion in the cluster coefficients 
with twenty mad twenty-one carbons is seen in the nbp signature, hut is absent in the 
tvap signature. All boiling point cluster coefficients are significantly larger than their 
propagated errors except for  P(C2o) -- P(C26) = P(C29 ) = P(C30 ) = -0.30 + 0.24 and p(C31 
through C4o), which are uncertain by 150% or more. No feature is found near 11 
carbons, corresponding to the "change in fractal dimension" detected by Rouvray [29]. 
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CEA signatures for critical temperatures and melting points of normal alkanes 
were obtained from their respective cluster expansions. The former is very similar to the 
boiüng point signamre. Melting point cluster coefficients (fig. 2) are altemately positive 
and negative, and much more slowly convergent than either boiling points or critical 
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Fig. 2. Melting point signature for normal alkanes through forty 
carbons. Normalized using ct = 114.55 K -1 and fl = -91.01/4.55. 

35 
4(3 

temperatures. Even-odd altemation is a well-known phenomenon for hydrocarbon 
melüng points. Broadhurst explains this phenomenon by pointing to the differences in 
crystal packing of the even and odd chains [30]. 

The heat of formation cluster expansion coefficients are shown in table 2, 
together with their errors. These coefficients converge more rapidly than those for the 
boiling points, a not surprising result in view of the historical success of the additive 
model for heats of formaüon. To find the relation connecting bond energies with 
the CEA coefficient h ( . - - .  ), consider the first two cluster expansion equafions: 
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Table 2 

Heats of formation for normal alkanes. The number of carborts are given in column one, followed by 
the heats of formation (kJ/mol) -1 with their errors in column two. The cluster coefficients (kJ/mol) -1 
and their errors are in column three, and the normalized coefficients (dimensionless) with their errors 
are in column four. Normalized using ct = 1/11.560 (kJ/mol) -1,/3 = 65.220/11.560 

No. earborts Heat of formation Cluster coefficient Normalized coefficient 
(kJ/mol) (kJ/mol) 

1 -74.529 + 0.010 -74.520 + 0.010 -0.8045 + 0.0009 
2 83.820 + 0.010 65.220 + 0.022 0.0000 + 0.0019 
3 -104.680 + 0.010 -11.560 + 0.024 -1.0000 + 0.0021 
4 -125.790 + 0.010 -0.250 + 0.024 -0.0216 + 0.0021 
5 -146.760 5:0.010 0.140 5:0.024 0.0121 5:0.0021 
6 -166.920 5:0.010 0.810 5:0.024 0.0701 5:0.0021 
7 -187.780 5:0.010 -0.700 5:0.024 -0.0606 + 0.0021 
8 -208.750 5:0.010 -0.110 5:0.024 -0.0095 5:0.0021 
9 -228.740 5:0.010 0.980 + 0.024 0.0848 5:0.0021 

10 -249.460 5:0.010 -0.730 5:0.024 -0.0632 5:0.0021 
11 -270.430 5:0.010 -0.250 5:0.024 -0.0216 5:0.0021 
12 -290.720 5:0.010 0.680 5:0.024 0.0588 5:0.0021 
13 -311.770 5:0.010 -0.760 + 0.024 -0.0657 5:0.0021 
14 -332.440 5:0.010 0.380 5:0.024 0.0329 5:0.0021 
15 -353.110 5:0.010 0.000 5:0.024 0.0000 + 0.0021 
16 -374.170 5:0.010 -0.390 5:0.024 -0.0337 5:0.0021 
17 -394.450 5:0.010 0.780 5:0.024 0.0675 5:0.0021 
18 --415.120 5:0.010 -0.390 5:0.024 -0.0337 + 0.0021 
19 --435.790 5:0.010 0.000 + 0.024 0.0000 5:0.0021 
20 --456.460 5:0.010 0.000 5:0.024 0.0000 + 0.0021 

A/~29s(C --) C)  + 2AH°z98(H-H) - 4A/-~29s(C-H) = AH~f.298(CH4)= h(.), (13a) 

2A/-/°298(C ~ C)  + 3A/-~298(H-H) - 6A/-/~298(C-H) - A/-~z98(C-C) = AH°f.29g(C2H6(g)) 
= 2 h ( . )  + h ( . - - . ) .  (13b) 

Solving for h ( . - - . )  and collecting terms, we find 

h ( - - - .  ) = -A]aB298(H-H ) + 2A/aB298(C-H ) - A/-~298(C-C ). (14) 

That is, the (hydrogen suppressed) two-vertex or "bond" cluster coefficient contains not 
only the traditional C-C bond enthalpy, but also the C-H and H-H bond enthalpies. 
The right-hand side is equal to 51.04 kJ according to the bond energies tabulated by 
Pauling [31]. The left-hand side is 65.22 kJ from table 2. The difference arises because 
bond energies are averaged over a variety of molecules. The third cluster expansion 
equation yields 
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h( . . . . .  ) = A n ° ~ , ( C ~ H , )  - 2AH° , , (C~ I - I , )  + A H ° 9 , ( C r ~ , ) ,  (15) 

which would be zero (as would all subsequent cluster coefficients) if bond energies 
were simply additive. The non-vanishing of h( . . . . .  ) and higher cluster contribu- 
tions reflects interactions between more or less delocalized aggregates of bonds (usuany 
lumped under the heading "steric effects"). 

lsomeric alkane boiling points, enthalpies of formation, and enthalpies and 
entropies of vaporization were cluster expanded, and coefficients do not show conver- 
gence analogous to that seen in figs. 1 and 2. 
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Fig. 3. Boiling point signature for all alkanes through ten carbons. Normalized 
using a = 1/26.304 K -1 and 13 = -38.796/26.302. Sequence numbers correspond 
to hydrocarbons tabulated by WAV code in table 1. 

The boiling point signature for alkane isomers is shown in fig. 3. The first two 
non-zero terms of the normalized signature are much larger in magnitude than all 
subsequent terms, but there is clearly no trend for convergence. Conspicuous large 
contributions are made by several branched clusters, for example: 
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bp'(40) = 0.383 + 0.004, 

bp'(109) = 0.389 + 0.016, 

bp'(145) = -0.465 + 0.016, 

where sequence numbers are enclosed in parentheses. The data suggest that scattered 
large cluster coefficients will continue beyond these 150 isomers. 

The enthalpy of formation signature is shown in fig. 4. Unnormalized one-, two- 
and three-carbon cluster coefficients are the large, dominant contributors to the enthalpy 
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Fig. 4. Enthalpy of formation signature for alkanes through ten carbons. 
Normalized using a = 1/11.56 (kJ/mol) -1 and fl = 65.22/11.56. 

of  formation just as they were for boiling points. Again, conspicuous large contributions 
are made by several branched clusters not always the same as, and with a range in values 
that is greater than, those seen for boiling points: 
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Ah'(74) = -2 .582  + 0.023, 

Ah'(134) = -3.464 + 0.056, 

Ah'(143) = -3.041 5: 0.038. 

Clusters with negative (positive) contributions confer stability (instability) relative to 
the sum of  enthalpies contributed by smaller clusters. 

The signatures of the enthalpies and entropies of vaporization reveal a pattem 
quite unlike any previously discussed. Since both signatures are similar, only one is 
shown: the enthalpy of vaporization, in fig. 5. The cluster coefficients for the normal 
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Fig, 5. Enthalpy of vaporization signature for all alkanes through ten 
carbons. Normalized using a = 1/0.592 (kcal/mol) -1 and fl = 0.393/0.592. 

150 

al_kanes are negative; however, the errors in the coefficients for nonane and decane are 
greater than 400% of the coefficients themselves. There are other 9-carbon and 10- 
carbon coefficients with large errors, but they are interspersed amid other coefficients 
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with small errors. What is obvious from the signature is that branched alkane coeffici- 
ents diverge while altemaüng in sign for even and odd carbon numbers. 

7.2. THEORETICAL PROPERTIES 

Since the Wiener number is defined (eq. (11)) on the distance matrix, which in 
mm contains the path lengths, it follows that the cluster expansion is in terms of chain 
clusters only (for trees): 

IIEI, i fTis  normal; 
w (7) = [ 0, otherwise. 

(17) 

This means that W(F) depends on branching indirectly as different paths traverse a 
common vertex (branched vertex). All branched graphs have cluster coefficients equal 
to zero. From eq. (17), it is clear that the Wiener cluster coefficients diverge. 

The Randi6 index is defined on the adjacency matrix. The cluster expansion of 
eq. (12) sums only over subgraphs which contain the edge (ij) corresponding to a non- 
zero value of A.. and also contain those edges which terminate on edge (/j), and thereby 

~J 
determine the valences v. and v.. Thus, the only clusters which can contribute have 

) 
diameter one, two or three. The cluster coefficient of a subgraph with diameter greater 
than three must vanish. The largest coefficient belongs to the stars. 

Any property which correlates weil with the Wiener number depends predomi- 
nantly on chain descriptors. Any property which correlates weil with the Randi(~ index 
depends predominantly on star descriptors and is independent of clusters having 
diameter greater than three. Correlation between properties and indices can be easily 
recognized through comparing their CEA signatures. 

8. Discussion of results 

The boiling point cluster contributions conform to the following physical inter- 
pretation. Before normalization, the unit cluster 7= .  makes a large positive contribution, 
bp(.) = 111.658 K, describing the bulk effect arising from molecular mass (heavier 
molecules require more thermal energy to reach escape velocity) and molecular "surface 
area" (attractive Van der Waals forces act through adjacent molecular surfaces). The 
next cluster descriptor makes a negative contribution, b p ( . - - . )  = -38.796, because 
bond formation lessens the surface otherwise exposed by two monomers: a bond 
between two units conceals a portion of the surface through which bonding occurs, thus 
mitigating intermolecular forces. Similarly, each normal cluster descriptor, • . . . .  , 
. . . . . . .  , etc., makes a negative contribution because increased length allows 
more bending of the chain, which again conceals surface. The highly branched 
clusters, with sequence numbers 40, 109, 145 and others, make unexpectedly large 
contributions and show no obvious correlation between their sign and either their 
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graphical structure or graph diameter. Even so, these !arge contributions are un- 
doubtedly due to physical effects determining the boiling points. 

If the boiling point excursion noted previously in the nbp data set is real, it 
implies that a new mechanism affecting boiling points comes into play at carbon 
numbers twenty and twenty-one. We prefer to attribute the excursion to experimental 
errors in the nbp data. Entropy data, which might offer some insight into the nature of 
this excursion, have not been tabulated, to our knowledge, beyond n = 20. The CEA 
signature of entropies of vaporization on the available data reveal no unusual contri- 
butions for the larger graphs. This seems to support the interpretation that the excursion 
noted for the nbp data is associated with experimental errors. 

Similar comments apply to other properties. For example, consider the first three 
heat of formation cluster coefficients before normalization: h(.) =-74.520 kJ/mol, 
which represents contribufions due to formation of 4 C-H bonds, breaking of 2 H - H  
bonds and atomization of graphite (eq. (13a)); h ( - -  .) = 65.220 kJ/mol represents 
C-C bond formation, H - H  bond formation and 2 C-H bonds breaking (eq. (14)); 
these first two coefficients comprise the bulk contribuüons to enthalpies of formation; 
h( . . . . .  ) = 11.560 kJ/mol represents the destabilizing effect on enthalpy of forma- 
tion due to the interaction between next nearest-neighboring methyl groups. Similarly, 
all higher-order cluster coefficients reveal the interactions commonly hidden under the 
single designation "steric effects" as arising from various cluster descriptors (some 
stabilizing and others destabilizing). 

9. Concluding remarks 

The CEA supplies a complete set of independent descriptors for any physico- 
chemico-pharmacological propert-y or graph-theoretic index. This set of descriptors, 
clusters, constitutes a signature for each property, and signatures exhibit the difference 
and similarity among propertaes and indices. Resolving a property into its CEA signa- 
ture is a form of pattem recognition. Each term in the CEA or each component of the 
signature supplies information regarding how structure determines propërties, functions 
and activiües. The cluster expansion is a mathematically rigorous and objective exten- 
sion and refinement of the subjecüve classificaüon of chemical structure concepts: 
bonds, steric interactions and resonance. (The latter not having been investigated in this 
work.) 

For example, the cluster coefficients of boiling points for normal alkanes 
converge monotonically (at least within expefimental errors), whereas the coefficients 
of branched hydrocarbon boiling points show unexpected large contribuüons. Such 
large cluster coefficients, evident in many of the signatures, point to parficular graphs 
as being noteworthy structural descriptors. In this way, one recognizes the expression 
of "chemical structure" in physical properties. 

In the case of the normal boiling points, a reasonable physical interpretation is 
possible, but for this property, and for other properties of branched hydrocarbons, 
interpretation is elusive. Signatures do provide information by which to analyze graph- 
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theorefic indices and promote the development of new indices with improved corre- 
lation to physical pmperties. Mathematical properties can be contrived to exhibit 
any desired signature. The Wiener number has the signature: {w(y= chain) = n - 1, 
w() '# chain) = 0}, as shown above. In other words, W(F) is determined completely from 
its linear cluster descriptors; its branched clusters do not contribute. On the other hand, 
the Randi6 index signature has r(y) = 0 if the diameter(y) > 3. Then, the only non-zero 
cluster contributions come from binary stars. In other words, R(I") is determined 
completely from branched clusters. Thus, R(F) and W(F) express complementary 
structure information. 

Although the CEA supplies a set of descriptors which is both complete and 
independent, these can only be evaluated if data are available for the complete set of 
structures involved. Therefore, unlike graph-theoretic indices, the CEA cannot be applied 
to a single chemical species. Future work modelling properties of alcohols, mono- 
carboxylic acids, halogenated hydrocarbons, etc. could be done using this approach with 
only minor modifications, viz., using rooted trees. Enumerations of rooted trees have 
already been accomplished [32]. Other properties, such as double-bond ionization 
potentials in alkenes [33], are not additive and therefore not susceptible to the kind of 
cluster expansion we have performed here. In particular, these potentials are constantive 
and require a different cluster function. 
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